60 research outputs found

    Harvesting Discriminative Meta Objects with Deep CNN Features for Scene Classification

    Get PDF
    Recent work on scene classification still makes use of generic CNN features in a rudimentary manner. In this ICCV 2015 paper, we present a novel pipeline built upon deep CNN features to harvest discriminative visual objects and parts for scene classification. We first use a region proposal technique to generate a set of high-quality patches potentially containing objects, and apply a pre-trained CNN to extract generic deep features from these patches. Then we perform both unsupervised and weakly supervised learning to screen these patches and discover discriminative ones representing category-specific objects and parts. We further apply discriminative clustering enhanced with local CNN fine-tuning to aggregate similar objects and parts into groups, called meta objects. A scene image representation is constructed by pooling the feature response maps of all the learned meta objects at multiple spatial scales. We have confirmed that the scene image representation obtained using this new pipeline is capable of delivering state-of-the-art performance on two popular scene benchmark datasets, MIT Indoor 67~\cite{MITIndoor67} and Sun397~\cite{Sun397}Comment: To Appear in ICCV 201

    Personalized Prompt for Sequential Recommendation

    Full text link
    Pre-training models have shown their power in sequential recommendation. Recently, prompt has been widely explored and verified for tuning in NLP pre-training, which could help to more effectively and efficiently extract useful knowledge from pre-training models for downstream tasks, especially in cold-start scenarios. However, it is challenging to bring prompt-tuning from NLP to recommendation, since the tokens in recommendation (i.e., items) do not have explicit explainable semantics, and the sequence modeling should be personalized. In this work, we first introduces prompt to recommendation and propose a novel Personalized prompt-based recommendation (PPR) framework for cold-start recommendation. Specifically, we build the personalized soft prefix prompt via a prompt generator based on user profiles and enable a sufficient training of prompts via a prompt-oriented contrastive learning with both prompt- and behavior-based augmentations. We conduct extensive evaluations on various tasks. In both few-shot and zero-shot recommendation, PPR models achieve significant improvements over baselines on various metrics in three large-scale open datasets. We also conduct ablation tests and sparsity analysis for a better understanding of PPR. Moreover, We further verify PPR's universality on different pre-training models, and conduct explorations on PPR's other promising downstream tasks including cross-domain recommendation and user profile prediction

    Subcellular Localization and RNA Interference of an RNA Methyltransferase Gene from Silkworm, Bombyx Mori

    Get PDF
    RNA methylation, which is a form of posttranscriptional modification, is catalyzed by S-adenosyl-L-methionone-dependent RNA methyltransterases (RNA MTases). We have identified a novel silkworm gene, BmRNAMTase, containing a 369-bp open reading frame that encodes a putative protein containing 122 amino acid residues and having a molecular weight of 13.88 kd. We expressed a recombinant His-tagged BmRNAMTase in E. coli BL21 (DE3), purified the fusion protein by metal-chelation affinity chromatography, and injected a New Zealand rabbit with the purified protein to generate anti-BmRNAMTase polyclonal antibodies. Immunohistochemistry revealed that BmRNAMTase is abundant in the cytoplasm of Bm5 cells. In addition, using RNA interference to reduce the intracellular activity and content of BmRNAMTase, we determined that this cytoplasmic RNA methyltransferase may be involved in preventing cell death in the silkworm

    Minimizing the programming power of phase change memory by using graphene nanoribbon edge-contact

    Full text link
    Nonvolatile phase change random access memory (PCRAM) is regarded as one of promising candidates for emerging mass storage in the era of Big Data. However, relatively high programming energy hurdles the further reduction of power consumption in PCRAM. Utilizing narrow edge-contact of graphene can effectively reduce the active volume of phase change material in each cell, and therefore realize low-power operation. Here, we demonstrate that a write energy can be reduced to about ~53.7 fJ in a cell with ~3 nm-wide graphene nanoribbon (GNR) as edge-contact, whose cross-sectional area is only ~1 nm2. It is found that the cycle endurance exhibits an obvious dependence on the bias polarity in the cell with structure asymmetry. If a positive bias was applied to graphene electrode, the endurance can be extended at least one order longer than the case with reversal of polarity. The work represents a great technological advance for the low power PCRAM and could benefit for in-memory computing in future.Comment: 14 pages, 4 figure

    Pre‐symptomatic transmission of novel coronavirus in community settings

    Full text link
    We used contact tracing to document how COVID‐19 was transmitted across 5 generations involving 10 cases, starting with an individual who became ill on January 27. We calculated the incubation period of the cases as the interval between infection and development of symptoms. The median incubation period was 6.0 days (interquartile range, 3.5‐9.5 days). The last two generations were infected in public places, 3 and 4 days prior to the onset of illness in their infectors. Both had certain underlying conditions and comorbidity. Further identification of how individuals transmit prior to being symptomatic will have important consequences.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163478/2/irv12773.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163478/1/irv12773_am.pd

    Interface-Induced Superconductivity in Magnetic Topological Insulator-Iron Chalcogenide Heterostructures

    Full text link
    When two different electronic materials are brought together, the resultant interface often shows unexpected quantum phenomena, including interfacial superconductivity and Fu-Kane topological superconductivity (TSC). Here, we use molecular beam epitaxy (MBE) to synthesize heterostructures formed by stacking together two magnetic materials, a ferromagnetic topological insulator (TI) and an antiferromagnetic iron chalcogenide (FeTe). We discover emergent interface-induced superconductivity in these heterostructures and demonstrate the trifecta occurrence of superconductivity, ferromagnetism, and topological band structure in the magnetic TI layer, the three essential ingredients of chiral TSC. The unusual coexistence of ferromagnetism and superconductivity can be attributed to the high upper critical magnetic field that exceeds the Pauli paramagnetic limit for conventional superconductors at low temperatures. The magnetic TI/FeTe heterostructures with robust superconductivity and atomically sharp interfaces provide an ideal wafer-scale platform for the exploration of chiral TSC and Majorana physics, constituting an important step toward scalable topological quantum computation.Comment: 14 pages, 4 figures. Accepted by Science. Comments are welcom
    corecore